Expression of a newly identified phosphate transporter/retrovirus receptor in human SaOS-2 osteoblast-like cells and its regulation by insulin-like growth factor I.

نویسندگان

  • G Palmer
  • J P Bonjour
  • J Caverzasio
چکیده

The cell surface receptor for gibbon ape leukemia virus (Glvr-1) was recently demonstrated to serve normal cellular functions as a sodium-dependent phosphate (NaPi) transporter. This protein belongs to a newly identified phosphate transporter/retrovirus receptor gene family distinct from renal type I and II NaPi transporters. Although inorganic phosphate (Pi) transport is an important function of osteoblasts and of the matrix vesicles produced by these cells in the context of bone matrix calcification, the molecular identity of the NaPi transport system(s) present in this cell type is still unknown. In contrast to Pi uptake mediated by renal NaPi transporters, the activities of both the osteoblastic transport system and Glvr-1 are decreased at alkaline pH, and this observation led us to investigate expression of this transporter in human SaOS-2 osteosarcoma cells. Northern blotting analysis revealed the presence of a 4-kilobase Glvr-1 transcript. The expression of Glvr-1 messenger RNA (mRNA) was increased in response to insulin-like growth factor I (IGF-I). Associated with this effect, a selective, dose- and time-dependent stimulation of NaPi transport was observed. Actinomycin D and cycloheximide abolished the increase in NaPi transport, which thus appeared to be dependent on RNA and protein synthesis. The increase in Glvr-1 mRNA induced by IGF-I was dose dependent and transient, peaking after 4 h (approximately 4-fold increase in response to 10(-7) M IGF-I). It preceded the maximal expression of NaPi transport stimulation (173-235% of control), which was observed after 18-24 h. Induction of Glvr-1 mRNA expression by IGF-I was inhibited by actinomycin D, suggesting that this effect was related to an increase in gene transcription. The stability of Glvr-1 mRNA was not altered by IGF-I, and Glvr-1 mRNA induction did not require the synthesis of new proteins. These data demonstrate for the first time regulated expression of mRNA encoding the type III NaPi transporter Glvr-1 in osteoblast-like cells. They also suggest that this new transporter family may be involved in Pi handling in osteogenic cells and in its regulation by osteotropic factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO

The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...

متن کامل

Effects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration

Introduction  Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective:  We hypothesi...

متن کامل

Production and functional characterization of human insulin-like growth factor 1

Insulin-like growth factor 1 (IGF-1) is a polypeptide hormone produced mainly by the liver in response to the endocrine growth hormone (GH) stimulus. This protein is involved in a wide range of cellular functions, including cellular differentiation, transformation, apoptosis suppression, migration and cell-cycle progression and other metabolic processes. In the current study, human heart cDNA w...

متن کامل

Fibroblast growth factor-2 inhibits mineralization of osteoblast-like Saos-2 cells by inhibiting the functioning of matrix vesicles.

Fibroblast growth factor-2 (FGF2) inhibits osteoblast mineralization, but the mechanism by which it does so is not fully understood. Matrix vesicles (MVs) play an essential role in the initiation of mineralization, so the current study examined the effect of FGF2 on the functioning of MVs to investigate this mechanism. This study found that FGF2 significantly inhibited differentiation and miner...

متن کامل

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Endocrinology

دوره 138 12  شماره 

صفحات  -

تاریخ انتشار 1997